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We present a statistical equilibrium model of self-organization in a class of focusing, non-
integrable nonlinear Schrödinger (NLS) equations. The theory predicts that the asymptotic–
time behavior of the NLS system is characterized by the formation and persistence of a
large–scale coherent solitary wave, which minimizes the Hamiltonian given the conserved par-
ticle number (L2-norm squared), coupled with small–scale random fluctuations, or radiation.
The fluctuations account for the difference between the conserved value of the Hamiltonian
and the Hamiltonian of the coherent state. The predictions of the statistical theory are test-
ed against the results of direct numerical simulations of NLS, and excellent qualitative and
quantitative agreement is demonstrated.

I. INTRODUCTION: NLS AND SOLITON TURBULENCE

A fascinating feature of many turbulent fluid and plasma systems is the emergence and persistence of large–
scale organized states, or coherent structures, in the midst of small–scale turbulent fluctuations. A familiar
example is the formation of macroscopic quasi–steady vortices in a turbulent large Reynolds number two
dimensional fluid[1, 2, 3]. Such phenomena also occur for many classical Hamiltonian systems, even though
the dynamics of these systems is formally reversible [4]. In the present work, we shall focus our attention on
another class of nonlinear partial differential equations whose solutions exhibit the tendency to form persistent
coherent structures immersed in a sea of microscopic turbulent fluctuations. This is the class of nonlinear wave
systems described by the well–known nonlinear Schrödinger (NLS) equation:

i∂tψ + ∆ψ + f(|ψ|2)ψ = 0 , (1)

where ψ(r, t) is a complex field and ∆ is the Laplacian operator. The NLS equation describes the slowly-varying
envelope of a wave train in a dispersive conservative system. It models, among other things, gravity waves
on deep water [5], Langmuir waves in plasmas [6], pulse propagation along optical fibers [7], and superfluid
dynamics [8]. When f(|ψ|2) = ±|ψ|2 and eqn. (1) is posed on the whole real line or on a bounded interval
with periodic boundary conditions, the equation is completely integrable [9]. Otherwise, it is nonintegrable.

The NLS equation (1) may be cast in the Hamiltonian form i∂tψ = δH/δψ∗, where ψ∗ is the complex
conjugate of the field ψ, and H is the Hamiltonian:

H(ψ) =
∫ (
|∇ψ|2 − F (|ψ|2)

)
dr . (2)

Here, the potential F is defined via the relation F (a) =
∫ a

0
f(y) dy. The dynamics (1) conserves, in addition

to the Hamiltonian, the particle number

N(ψ) =
∫
|ψ|2 dr . (3)

We shall assume throughout that eqn. (1) is posed in a bounded one dimensional interval with either
periodic or homogeneous Dirichlet boundary conditions. We restrict our attention to attractive, or focusing,
nonlinearities f(f(a) ≥ 0, f ′(a) > 0) such that the dynamics described by (1) is nonintegrable, free of wave
collapse, and admits stable solitary–wave solutions. The dynamics under these conditions has been referred
to as soliton turbulence [10]. Such is the case for the important power law nonlinearities, f(|ψ|2) = |ψ|s,
with 0 < s < 4 (in the periodic case, s 6= 2 for nonintegrability) [11, 12], and also for the physically relevant
saturated nonlinearities f(|ψ|2) = |ψ|2/(1 + |ψ|2) and f(|ψ|2) = 1− exp(−|ψ|2), which arise as corrections to
the cubic nonlinearity for large wave amplitudes [13].
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Equation (1) in one spatial dimension has solitary wave solutions of the form ψ(x, t) = φ(x) exp(iλ2t), where
φ satisfies the nonlinear eigenvalue equation:

φxx + f(|φ|2)φ− λ2φ = 0 . (4)

It has been argued [10, 14] that the solitary wave solutions play a prominent role in the long–time dynamics of
(1), in that they act as statistical attractors to which the system relaxes. The numerical simulations in [10], as
well as the simulations we shall present within this article, support this conclusion. Indeed, it is seen that for
rather generic initial conditions the field ψ evolves, after a sufficiently long time, into a state consisting of a
spatially localized coherent structure, which compares quite favorably to a solution of (4), immersed in a sea of
turbulent small-scale turbulent fluctuations. At intermediate times the solution typically consists of a collection
of these soliton-like structures, but as time evolves, the solitons undergo a succession of collisions in which
the smaller soliton decreases in amplitude, while the larger one increases in amplitude. When solitons collide
or interact, they shed radiation, or small–scale fluctuations. The interaction of the solitons continues until
eventually a single soliton of large amplitude survives amidst the turbulent background radiation. Figure 1
illustrates the evolution of the solution of (1) for the particular nonlinearity f(|ψ|2) = |ψ| and with periodic
boundary conditions on the spatial interval [0, 256].
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FIG. 1. Profile of the modulus |ψ|2 at four different times for the system (1) with nonlinearity f(|ψ|2) = |ψ| and
periodic boundary conditions on the interval [0, 256]. The initial condition is ψ(x, t = 0) = A, with A = 0.5, plus a small
random perturbation. The numerical scheme used to approximate the solution is the split-step Fourier method. The
grid size is dx = 0.125, and the number of modes is n = 2048. a) t = 50 unit time: Due to the modulational instability,

an array of soliton-like structures separated by the typical distance li = 2π/
√
A/2 = 4π is created; b) t = 1050 unit

time: The solitons interact and coalesce, giving rise to a smaller number of solitons of larger amplitude; c) t = 15050:
The coarsening process has ended. One large soliton remains in a background of small–amplitude radiation. Notice
that for t = 55050 unit time (d)), the amplitude of the fluctuations has diminished while the amplitude of the soliton
has increased.

In modeling the long–time behavior of a Hamiltonian system such as NLS, it seems natural to appeal to the
methods of equilibrium statistical mechanics. That such an approach may be relevant for understanding the
asymptotic–time state for NLS has already been suggested in [10], although the thermodynamic arguments
presented by these authors are rather formal and somewhat incomplete. Motivated in part by the ideas
outlined in[10], Jordan et al. [15] have recently constructed a mean–field statistical theory to characterize the
large–scale structure and the statistics of the small–scale fluctuations inherent in the asymptotic–time state of
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the focusing nonintegrable NLS system (1). The main prediction of this theory is that the coherent state that
emerges in the long–time limit is the ground state solution of equation (4). That is, it is the solitary wave
that minimizes the Hamiltonian H given the constraint N = N0, where N0 is the initial and conserved value
of the particle number integral. This prediction is in accord with previous theories[10, 14], but the approach
taken in [15] is new, and provides a definite interpretation to the notion set forth in the earlier works that it is
“thermodynamically advantageous” for the NLS system to approach a coherent solitary wave structure that
minimizes the Hamiltonian subject to fixed particle number. The statistical theory also gives predictions for
the particle number spectral density and the kinetic energy spectral density, at least for a finite–dimensional
spectral truncation of the NLS dynamics (1). In particular, it predicts an equipartition of kinetic energy
among the small–scale fluctuations.

II. MEAN-FIELD STATISTICAL MODEL

In order to develop a meaningful statistical theory, we begin by introducing a finite–dimensional approxima-
tion of the NLS equation (1). To fix ideas and notation, we will consider the NLS system with homogeneous
Dirichlet boundary conditions on an interval Ω of length L. Our methods can easily be modified to accommo-
date other boundary conditions, and we will consider below the predictions of the theory for periodic boundary
conditions, as well. In addition, our techniques can easily be extended to higher dimensions, but we wish to
concentrate on the one–dimensional case for ease of presentation.

Let ej(x) =
√

2/L sin(kjx) with kj = πj/L, and for any function g(x) on Ω denote by gj =
∫

Ω
g(x)ej(x) dx

its jth Fourier coefficient with respect to the orthonormal basis ej , j = 1, 2, · · ·. Define the functions u(n)(x, t) =∑n
j=1 uj(t)ej(x) and v(n)(x, t) =

∑n
j=1 vj(t)ej(x), where the real coefficients uj , vj , j = 1, · · · , n, satisfy the

coupled system of ordinary differential equations

u̇j − k2
j vj +

(
f((u(n))2 + (v(n))2)v(n)

)
j

= 0

v̇j + k2
juj −

(
f((u(n))2 + (v(n))2)u(n)

)
j

= 0 .
(5)

Then the complex function ψ(n) = u(n) + iv(n) satisfies the equation

iψ
(n)
t + ψ(n)

xx + Pn(f(|ψ(n)|2)ψ(n)) = 0 ,

where Pn is the projection onto the span of the eigenfunctions e1, · · · , en. This equation is a natural spectral
approximation of the NLS equation (1), and it may be shown that its solutions converge as n→∞ to solutions
of (1) [11, 16].

For given n, the system of equations (5) defines a dynamics on the 2n–dimensional phase space R2n. This
finite-dimensional dynamical system is a Hamiltonian system, with conjugate variables uj and vj , and with
Hamiltonian

Hn = Kn + Θn , (6)

where

Kn =
1
2

∫
Ω

((u(n)
x )2 + (v(n)

x )2) dx =
1
2

n∑
j=1

k2
j (u2

j + v2
j ) , (7)

is the kinetic energy, and

Θn = −1
2

∫
Ω

F ((u(n))2 + (v(n))2)dx , (8)

is the potential energy. The Hamiltonian Hn is, of course, an invariant of the dynamics. The truncated version
of the particle number
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Nn =
1
2

∫
Ω

((u(n))2 + (v(n))2) dx =
1
2

n∑
j=1

(u2
j + v2

j ) , (9)

is also conserved by the dynamics (5). The factor 1/2 is included in the definition of the particle number for
convenience. The Hamiltonian system (5) satisfies the Liouville property, which is to say that the measure∏n
j=1 dujdvj is invariant under the dynamics [17]. This property together with the assumption of ergodicity

of the dynamics provide the usual starting point for a statistical treatment of a Hamiltonian system [18].
With the finite dimensional Hamiltonian system in hand, we now consider a macroscopic description in

terms of a probability density ρ(n)(u1, · · · , un, v1 · · · , vn) on the 2n–dimensional phase–space R2n. We seek a
probability density that describes the statistical equilibrium state for the truncated dynamics. In accord with
standard statistical mechanics and information theoretic principles, we define this state to be the density ρ(n)

on 2n–dimensional phase space which maximizes the Gibbs–Boltzmann entropy functional

S(ρ(n)) = −
∫

R2n
ρ(n) log ρ(n)

n∏
j=1

dujdvj , (10)

subject to constraints dictated by the conservation of the Hamiltonian and the particle number under the
dynamics (5) [18, 19].

The key to constructing an appropriate statistical model is based on the observation from numerical simu-
lations that, for a large number of modes n, in the long–time limit, the field (u(n), v(n)) decomposes into two
essentially distinct components: a large–scale coherent structure, and small–scale radiation, or fluctuations.
As time progresses, the amplitude of the fluctuations decreases, until eventually the contribution of the fluc-
tuations to the particle number and the potential energy component of the Hamiltonian becomes negligible
compared to the contribution from the coherent state, so that Nn and Θn are determined almost entirely by
the coherent structure. We have checked that this effect becomes even more pronounced when the resolution
of the numerical simulations is improved (i.e., when the number of modes is increased with the length L of the
spatial interval fixed). On the other hand, as the fluctuations exhibit rapid spatial variations, the amplitude
of their gradient does not, in general, become negligible in the asymptotic time limit. Consequently, the
fluctuations can make a significant contribution to the kinetic energy component Kn of the Hamiltonian. This
is illustrated in Fig. 2 below.

Now, denoting by 〈uj〉 and 〈vj〉 the means of the variables uj and vj with respect the admis-
sible ensemble ρ(n), we identify the coherent state with the mean–field pair (〈u(n)(x)〉, 〈v(n)(x)〉) =
(
∑n
j=1〈uj〉ej(x),

∑n
j=1〈vj〉ej(x)). The fluctuations, or small-scale radiation inherent in the long–time s-

tate then correspond to the difference (δu(n), δv(n)) ≡ (u(n) − 〈u(n)〉, v(n) − 〈v(n)〉) between the state vector
(u(n), v(n)) and the mean–field vector. The statistics of the fluctuations are encoded in the probability density
ρ(n). Based on the considerations of the preceding paragraph, it seems reasonable to conjecture that the am-
plitude of the fluctuations of the field ψ(n) in the long-time state of the NLS system (5) should vanish entirely
(in some appropriate sense) in the continuum limit n → ∞. Thus we are led to the following vanishing of
fluctuations hypothesis:∫

Ω

[
〈(δu(n))2〉+ 〈(δv(n))2〉

]
dx ≡

n∑
j=1

[
〈(δuj)2〉+ 〈(δvj)2〉

]
→ 0 , as n→∞ . (11)

Here, δuj = uj − 〈uj〉 represents the fluctuations of the Fourier coefficient uj about its mean value 〈uj〉, and
similarly for δvj . We emphasize that (11) is a hypothesis used to construct our statistical theory, and not a
conclusion drawn from the theory itself.
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FIG. 2. Numerical simulation for the saturated non-linearity f(|ψ|2) = |ψ|2/(1 + |ψ|2) and for periodic boundary
conditions. The total number of modes is n = 1024 and the spatial grid size is dx = 0.25, so that the length of periodic
interval is L = 256. Displayed are the modulus of the field |ψ|2 (first and second rows), and the modulus of the
gradient of the field |ψx|2 (third row) at unit times t = 30, 000 (left) and t = 220, 000 (right). The second row shows
the same results as the first row, except that the we have restricted the range on the vertical axis in order to focus in
on the the fluctuations of the field. Notice that the dynamics for this saturated nonlinearity is qualitatively similar to
that for the power law nonlinearity f(|ψ|2) = |ψ| shown in Fig. 1: the long–time state consists of large-scale coherent
solitary wave–like structure interacting with a sea of small-scale fluctuations (top row). The typical amplitude of the
fluctuations of the field has decreased from t = 30, 000 to t = 220, 000 (second row), while the amplitude of the coherent
structure has increased somewhat. The maximum of the modulus of the field is on the order of 50 times larger than
the typical modulus of the fluctuations at t = 220, 000. On the other hand, the typical amplitude of the fluctuations of
the gradient of the field has actually increased somewhat from t = 30, 000 to t = 220, 000, and the typical amplitude of
the fluctuations of the gradient is only several times smaller than the maximum amplitude of the gradient of the field
(bottom row). Clearly, the fluctuations make a significant contribution to the kinetic energy in the long-time limit.

An immediate consequence of the vanishing of fluctuations hypothesis is that for n sufficiently large, the ex-
pectation 〈Nn〉 of the particle number is determined almost entirely by the mean (〈u(n)〉, 〈v(n)〉). Furthermore,
the hypothesis (11) implies that for n large, the expectation 〈Θn(u(n), v(n))〉 of the potential energy is well
approximated by Θn(〈u(n)〉, 〈v(n)〉), which is the potential energy of the mean. This may be seen by expanding
the potential F about the mean (〈u(n)〉, 〈v(n)〉) in equation (8), taking expectations, and noting that because
of the vanishing of fluctuations hypothesis (11), there holds |〈Θn(u(n), v(n))〉 − Θn(〈u(n)〉, 〈v(n)〉)| = o(1)
as n → ∞. Notice, however, that the vanishing of fluctuations hypothesis does not imply that the
contribution of the fluctuations to the expectation of the kinetic energy becomes negligible in the lim-
it n → ∞. Indeed, this contribution is (1/2)

∑n
j=1 k

2
j [〈(δuj)2〉 + 〈(δvj)2〉], which need not tend to 0

as n → ∞, even if (11) holds. Thus, from these arguments, we conclude that for n sufficiently large,
〈Hn〉 ≈ 1

2

∑n
j=1 k

2
j (〈u2

j 〉 + 〈v2
j 〉) − 1

2

∫
Ω
F (〈u(n)〉2 + 〈v(n)〉2) dx. These considerations lead us to impose the

following mean–field constraints on the admissible probability densities ρ(n) on the 2n-dimensional phase
space:

Ñn(ρ(n)) ≡ 1
2

∑n
j=1(〈uj〉2 + 〈vj〉2) = N0

H̃n(ρ(n)) ≡ 1
2

∑n
j=1 k

2
j (〈u2

j 〉+ 〈v2
j 〉)− 1

2

∫
Ω
F (〈u(n)〉2 + 〈v(n)〉2) dx = H0 .

(12)

Here, N0 and H0 are the conserved values of the particle number and the Hamiltonian, as determined from
initial conditions. The statistical equilibrium states are then defined to be probability densities ρ(n) on the
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phase–space R2n that maximize the entropy (10) subject to the constraints (12). We shall refer to the
constrained maximum entropy principle that determines the statistical equilibria as (MEP).

Further justification and motivation for the vanishing of fluctuations hypothesis (11), which leads to the
mean–field constraints in the maximum entropy principle (MEP), are provided in [15]. In particular, it is proved
in [15] that the solutions ρ(n) of (MEP) concentrate on the phase–space manifold on which Hn = H0 and Nn =
N0 in the continuum limit n → ∞, in the sense that 〈Nn〉 → N0, 〈Hn〉 → H0, and var Nn → 0, var Hn → 0
in this limit. Here, var W denotes the variance of the random variable W . This concentration property
establishes a form of asymptotic equivalence between the mean–field ensembles ρ(n) and the microcanonical
ensemble, which is the invariant measure concentrated on the phase–space manifold on which Hn = H0 and
Nn = N0. It therefore provides a strong theoretical justification for the mean–field statistical model.

III. CALCULATION AND ANALYSIS OF EQUILIBRIUM STATES

The solutions ρ(n) of (MEP) are calculated by an application of the Lagrange multiplier rule

S′(ρ(n)) = µÑ ′n(ρ(n)) + βH̃ ′n(ρ(n)) ,

where β and µ are the Lagrange multipliers to enforce that the probability density ρ(n) satisfy the constraints
(12). A straightforward but tedious calculation yields the following expression for the maximum entropy
distribution ρ(n)[15]:

ρ(n)(u1, . . . , un, v1, . . . , vn) =
n∏
j=1

ρj(uj , vj) , (13)

where, for j = 1, . . . , n,

ρj(uj , vj) =
βk2

j

2π
exp

{
−
βk2

j

2
(
(uj − 〈uj〉)2 + (vj − 〈vj〉)2

)}
, (14)

with:

〈uj〉 = 1
k2
j

(
f(〈u(n)〉2 + 〈v(n)〉2)〈u(n)〉

)
j
− µ

βk2
j

〈uj〉

〈vj〉 = 1
k2
j

(
f(〈u(n)〉2 + 〈v(n)〉2)〈v(n)〉

)
j
− µ

βk2
j

〈vj〉 .
(15)

Thus, for each j, uj and vj are independent Gaussian variables, with means given by the nonlinear equations
(15) and with identical variances

var uj = var vj =
1
βk2

j

. (16)

Note that var uj = 〈(δuj)2〉 by definition, and likewise for vj . Obviously, the multiplier β must be positive.
Notice also that, since the probability density ρ(n) factors according to (13), the Fourier modes uj , vj , j =
1, · · · , n, are mutually uncorrelated. In addition, we see from (15) that the complex mean–field 〈ψ(n)〉 =
〈u(n)〉+ i〈v(n)〉 is solution of (setting λ = µ/β)

〈ψ(n)〉xx + Pn
(
f(|〈ψ(n)〉|2)〈ψ(n)〉

)
− λ〈ψ(n)〉 = 0 , (17)

which is clearly the spectral truncation of the eigenvalue equation (4) for the continuous NLS system (1). It
follows, therefore, that the mean–field predicted by our theory corresponds to a solitary wave solution of the
NLS equation. Alternatively, the mean (〈u(n)〉, 〈v(n)〉) is a solution of the variational equation δHn+λδNn = 0,
where λ is a Lagrange multiplier to enforce the particle number constraint Nn = N0.
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Now, as the maximum entropy distribution ρ(n) is required to satisfy the mean–field Hamiltonian constraint
(12), it follows from (13)–(17) that

H0 =
n

β
+Hn(〈u(n)〉, 〈v(n)〉) . (18)

The term n/β represents the contribution to the kinetic energy from the Gaussian fluctuations, and
Hn(〈u(n)〉, 〈v(n)〉) is the Hamiltonian of the mean. Notice that the contribution of the fluctuations to the
kinetic energy is divided evenly among the n Fourier modes. From (18), we obtain the following expression
for β in terms of the number of modes n and the Hamiltonian Hn(〈u(n)〉, 〈v(n)〉) of the mean:

β =
n

H0 −Hn(〈u(n)〉, 〈v(n)〉)
. (19)

Using equations (13)–(19), we may easily calculate the entropy of any solution ρ(n) of (MEP). This yields,
after some algebraic manipulations, that

S(ρ(n)) = C(n) + n log
(
L2[H0 −Hn(〈u(n)〉, 〈v(n)〉)]

n

)
. (20)

where C(n) = n −
∑n
j=1 log(j2π/2) depends only on the number of Fourier modes n. Clearly, the entropy

S(ρ(n)) will be maximum if and only if the mean field pair (〈u(n)〉, 〈v(n)〉) corresponding to ρ(n) realizes the
minimum possible value of Hn over all fields (u(n), v(n)) that satisfy the constraint Nn(u(n), v(n)) = N0.

Equation (20) reveals that in statistical equilibrium the entropy is, up to additive and multiplicative con-
stants, the logarithm of the the kinetic energy contained in the turbulent fluctuations about the mean state.
This result, therefore, provides a precise interpretation to the notions set forth by Zakharov et al. [10] and
Pomeau [14] that the entropy of the NLS system is directly related to the amount of kinetic energy contained
in the small-scale fluctuations, and that it is “thermodynamically advantageous” for the solution of NLS to
approach a ground state which minimizes the Hamiltonian for the given number of particles.

We now know that Hn(〈u(n)〉, 〈v(n)〉) = H∗n, where H∗n is the minimum vale of Hn allowed by the particle
number constraint Nn = N0. As a consequence, the Lagrange multiplier β is uniquely determined by (19):

β =
n

H0 −H∗n
. (21)

That the “inverse temperature” β scales linearly with the number of Fourier modes n is required in order to
obtain a meaningful continuum limit n→∞ in which the expectations of the Hamiltonian and particle number
remain finite. The scaling of the inverse temperature with the number of modes is a common feature of the
equilibrium statistical mechanics of finite dimensional approximations of other plasma and fluid systems with
infinitely many degrees of freedom, as well [21]. The parameter λ (which depends on n) is also determined
by the requirement that the mean (〈u(n)〉, 〈v(n)〉) realize the minimum value of the Hamiltonian Hn given the
particle number constraint Nn = N0.

Using eqns. (16) and (21), we may now obtain an exact expression for the contribution of the fluctuations
to the expectation of the particle number. This is

1
2

n∑
j=1

[
〈(δuj)2〉+ 〈(δvj)2〉

]
=
H0 −H∗n

n

n∑
j=1

1
k2
j

= O(n−1) , as n→∞ . (22)

Recall that in the derivation of the mean–field constraints (12), we assumed the vanishing of fluctuations
condition (11). The calculation (22) shows, therefore, that the maximum entropy distributions ρ(n) indeed
satisfy the hypothesis (11), and hence, that the mean–field statistical theory is consistent with the assumption
that was made to derive it. But as the analysis of this section has shown, the maximum entropy distributions
ρ(n) provide much more information than is contained in the hypothesis (11). Most importantly, we know that
the mean–field corresponding to ρ(n) is an absolute minimizer of the Hamiltonian Hn subject to the particle
number constraint Nn = N0. In addition, the theory yields predictions for the particle number and kinetic
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energy spectral densities, at least for the 2n-dimensional spectrally truncated NLS system (5) with n large.
Indeed, we have the following prediction for the particle number spectral density

〈|ψj |2〉 = |〈ψj〉|2 +
H0 −H∗n
nk2

j

, (23)

where we have used the identity ψj = uj + ivj , and eqns. (16) and (21). The first term on the right hand
side of (23) is the contribution to the particle number spectrum from the mean, and the second term is the
contribution from the fluctuations. Since the mean field is a smooth solution of the ground-state equation,
its spectrum decays rapidly, so that for j >> 1, we have the approximation 〈|ψj |2〉 ≈ (H0 − H∗n)/(nk2

j ).
The kinetic energy spectral density is obtained simply by multiplying eqn. (23) by k2

j . As emphasized above,
we have the prediction that the kinetic energy arising from the fluctuations is equipartitioned among the n
spectral modes, with each mode contributing the amount (H0 −H∗n)/n.

While we have chosen to present the statistical theory specifically for homogeneous Dirichlet boundary
conditions, it is straightforward to develop the theory for NLS on a periodic interval of length L, as well. In
this case, it is most convenient to write the spectrally truncated complex field ψ(n) as

ψ(n) =
n/2∑

j=−n/2

ψj exp(ikjx) ,

for n an even positive integer, where kj = 2πj/L. The predictions of the statistical theory remain the same
as in the case of Dirichlet boundary conditions. In particular, the mean field 〈ψ(n)〉 is a minimizer of the
Hamiltonian Hn given the particle number constraint Nn = N0, and the particle number spectrum satisfies
(23) for j 6= 0 The Fourier coefficient ψ0 may be consistently chosen to be deterministic (i.e., var ψ0 = 0 and
〈ψ0〉 ≡ ψ0), to eliminate the ambiguity arising from the 0 mode.

IV. NUMERICAL RESULTS

The general predictions of the statistical theory developed above do not depend crucially on the particular
nonlinearity f in the NLS equation (1). Indeed, for any f satisfying the conditions stated in the introduction,
the coherent structure predicted by the theory in the continuum limit n → ∞ corresponds to the solitary
wave that minimizes the energy for the given number of particles N0. Also, for any such nonlinearity f , the
particle number spectrum in the long-time limit for the spectrally truncated NLS system (5), according to the
statistical theory, should obey the relation (23). Of course, the minimum value H∗n of the Hamiltonian Hn

which enters this formula does depend on f .
Here, we will present numerical results primarily for periodic boundary conditions and for the focusing

power law nonlinearity f(|ψ|2) = |ψ|. That is, we shall solve numerically the particular NLS equation

i∂tψ + ∂xxψ + |ψ|ψ = 0 , (24)

on a periodic interval of length L. We have, however, carried out similar numerical experiments for different
focusing nonlinearities and for Dirichlet boundary conditions, and we observed that the general qualitative
features of the long-time dynamics are unaltered by such changes. The nonlinearity f(|ψ|2) = |ψ| actually
represents a nice compromise between the focusing effect and nonlinear interactions. For weaker nonlinearities
(such as the saturated ones), the interaction between modes is weak, and the time required to approach an
asymptotic equilibrium state is quite long. On the other hand, for stronger nonlinearities, the solitary wave
structures that emerge exhibit narrow peaks of large amplitude, and therefore, greater spatial resolution is
required in the numerical simulations.

The numerical scheme that we use for solving (24) is the well-known split-step Fourier method for a given
number n of Fourier modes. Throughout the duration of the simulations, the relative error in the particle
number is kept at less than 10−6 percent, and the relative error in the Hamiltonian is no greater than 10−2

percent. Notice that the numerical simulations, performed naturally for a finite number of modes, provide an
ideal context for comparisons with the mean–field statistical theory outlined above.
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On the whole real line, the nonlinear Schrödinger equation (24) has solitary wave solutions of the form
ψ(x, t) = φ(x)eiλ

2t, with

φ(x) =
3λ2

2cosh2(λ(x−x0)
2 )

(25)

The particle number N and the Hamiltonian H of these soliton–like solutions are determined by the parameter
λ through the relationships N = 6λ3 and H = − 18

5 λ
5. For a given value of the particle number N , the solitary

wave (25) is the global minimizer of the Hamiltonian H (when the integrals in the definitions (2) and (3) of
the Hamiltonian and the particle number extend over the real line). Of course, the solitary wave solutions
for the equation (24) on a finite interval, as well as those for the spectrally-truncated version (5), differ from
the solution (25) over the infinite interval. However, the solitary waves (25) exhibit an exponential decay, and
for a large enough interval, and a large enough number of modes n, such differences can be neglected for all
practical purposes.

We choose to present in this paper the following set of numerical simulations: starting with the spatially
homogeneous solution ψ(x, t = 0) = A (with A of order 1), we add initially a small spatially uncorrelated
random perturbation, so that the modulational instability develops. Although we have checked that the
long–time behavior of the solution is not dependent on the initial conditions, except through the initial and
conserved values N0 and H0 of the particle number and the Hamiltonian, this class of initial conditions
is particularly convenient for our purposes. For example, by considering different realizations of the initial
random perturbation, we may perform an ensemble average over different initial conditions for a given A (and
therefore for fixed N0 and H0). The spatially uniform initial conditions we consider here may be thought of as
being far away from the expected statistical attractor described by the maximum entropy probability density
ρ(n). Indeed, the spectrum of the condensate differs considerably from the predicted statistical equilibrium
spectrum (23). The numerical simulations that we perform here provide strong evidence that the solutions
of the spectrally truncated NLS system converge in the long-time limit to a state that may be considered as
statistically steady. We shall compare the statistical properties of this long-time state with the predictions of
the mean–field statistical theory that was developed and analyzed above.

Figure 1 demonstrates that the dynamics can be roughly decomposed into three stages: in the first stage,
illustrated in Figure 1a, the modulational instability creates an array of soliton-like structures separated by a
typical distance li = 2π/ki associated with most unstable wave number ki. The second stage is characterized by
the interaction and coalescence of these solitons. In this coarsening process, the number of solitons decreases,
while the amplitudes of the surviving solitons increase, until eventually a single soliton of large amplitude
persists amongst a sea of small-amplitude background radiation (Figures 1b and c). During the final stage of
the dynamics, the surviving large-scale soliton interacts with the small-scale fluctuations. As time increases,
the amplitude of the soliton increases, while the amplitude of the fluctuations decreases (note the changes
from Figure 1c to Figure 1d). In this stage of the dynamics, the mass (or number of particles) is gradually
transferred from the small-scale fluctuations to the large-scale coherent soliton. For a finite number of modes
n, the dynamics eventually reaches a “stationary” state whose properties are very well described by the mean–
field statistical equilibrium theory developed above, as we shall demonstrate. This implies that long-time state
may, in fact, be thought of as a “statistical attractor”, in the sense that, according to the statistical theory, it
corresponds to a maximizer of the entropy functional (10) subject to the dynamical constraints (12). we note
that a numerical simulation starting from the state in Fig. 1d but with the time step taken negative shows
the reverse dynamics up to round-off errors, where one can observe the decomposition of the solution into an
array of soliton-like structures as in Fig. 1a for intermediate times, while in the limit t→ −∞ an equilibrium
state such as the one of Fig. 1d is once again attained.

The tendency of the solution of the NLS system (24) to approach the statistical equilibrium state is also
captured in the evolution of the kinetic and potential energies (see Fig. 3). While the sum of these two
quantities, which is the Hamiltonian, remains constant in time, we observe that the kinetic energy increases
monotonically, and, consequently, the potential energy decreases monotonically as time goes on. The initial
time period where these quantities evolve most rapidly (say t < 20000) corresponds to the first two stages of
the dynamics described above, in which the modulational instability creates an array of soliton-like structures
which then coalesce into a single coherent soliton. After the coalescence has ended, the kinetic (potential)
energy increases (decreases) very slowly to its saturation value. In the process, fluctuations develop on finer
and finer spatial scales, which accounts for the gradual increase of kinetic energy, while the surviving soliton
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slowly absorbs mass from the background fluctuations, thereby increasing the magnitude of the contribution
to the potential energy from the coherent structure. In the long-time limit, therefore, the soliton accounts for
the vast majority of the potential energy, while the fluctuations make a substantial contribution to the kinetic
energy.
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FIG. 3. Time evolution of the kinetic (upper curve) and the potential (middle curve) energies. The kinetic energy is
increasing and consequently the potential energy is decreasing, in accord with the statistical theory developed above.
The lower line indicates the potential energy of the solitary wave that contains all the particles of the system. The
curves are obtained from an ensemble average over 16 initial conditions for n = 512. The length of the system is
L = 128, and the (conserved) values of the particle number and the Hamiltonian are, respectively, N0 = 20.48 and
H0 = −5.46.

The mean–field statistical theory provides a prediction for the expected value of the kinetic energy Kn in
statistical equilibrium for a given number of modes n. This is 〈Kn〉 = Kn(〈ψ(n)〉) + H0 −H∗n, which follows
directly upon multiplying eqn. (23) by k2

j and summing over j. The first term in this expression for 〈Kn〉 is the
contribution to the mean kinetic energy from the coherent soliton structure which minimizes the Hamiltonian
Hn subject to the particle number constraint Nn = N0. The second term in 〈Kn〉 is the contribution to the
expectation of the kinetic energy from the fluctuations. H∗n is the minimum value of Hn given the particle
number constraint. As n→∞, we see that 〈Kn〉 converges to K(ψ∞) +H0−H∗, where ψ∞ is the minimizer
of the Hamiltonian H given the particle number constraint N = N0 for continuous NLS system on the interval
[0, L], and H∗ = H(ψ∞). Approximating K(ψ∞) and H(ψ∞) by K(φ) and H(φ), where φ is the solitary
wave on the real line whose particle number is N0, we obtain for the setting considered in Figure 3 the
large n estimates Kn(〈ψ(n)〉) ≈ 9.2,H0 − H∗n ≈ 22.4, and therefore, 〈Kn〉 ≈ 31.6. Also, according to the
statistical theory, the expected value 〈Θn〉 of the potential energy in statistical equilibrium should converge
as n → ∞ to Θ(ψ∞). Approximating this by Θ(φ), with φ as above, we have the estimate 〈Θn〉 ≈ −37.1,
which we expect to be accurate for sufficiently large n. We see that the kinetic (potential) energy of the
numerical solution is bounded above (below) by the estimate based on the statistical theory, but as expected,
the solution does not attain the theoretically predicted value for a finite number of modes. This is because,
for the spectrally truncated system, a finite amount of the particle number and the potential energy integrals
are actually contained in the small-scale fluctuations (according to the statistical theory, the contribution of
the fluctuations to these quantities should be O(1/n), where n is the number of spectral modes –this follows
from (23) [15]). It may be checked that the spatial resolution is improved (i.e., when the number of modes n
is increased, while the length L of the spatial interval, and the values H0 and N0 of the Hamiltonian and the
particle number are held fixed), the contributions of the fluctuations to the particle number and the potential
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energy decrease, and the saturation values of the kinetic and potential energy attained in the numerical
simulations come closer to the predicted statistical equilibrium averages of these quantities. We expect that
the contributions of the fluctuations to the particle number and the potential energy should vanish entirely
as n→∞ for fixed L, H0 and N0, and that the predicted statistical equilibrium values for the mean kinetic
energy and potential energy should be approached very closely by the numerical solution in the long-time limit
when the number of modes in the simulation is sufficiently large.

Figures 1 and 3 illustrate that for a given (large) number of modes n, the dynamics converges when t→∞
to a state consisting of a large-scale coherent soliton, which accounts for all but a small fraction of the particle
number and the potential energy integrals, coupled with small-scale radiation, or fluctuations, which account
for the kinetic energy that is not contained in the coherent structure. Formula (23) suggests, in fact, that in
the long–time limit, the coherent structure and the background radiation exist in balance (or in statistical
equilibrium) with each other, through the equipartition of kinetic energy of the fluctuations. In Figure 4,
we display the particle number spectral density |ψk|2, where ψk is the Fourier transform of the field ψ, as
a function of the wave number k for a long time run. To obtain this spectrum, we have performed both
an ensemble average over 16 initial conditions, and a time average over the final 1000 time units for each
run. For comparison, we have displayed in this figure the spectrum of the solitary wave (25) whose particle
number is equal to conserved value of the particle number for the simulation. Observe that there is both
a qualitative and quantitative agreement between the spectrum of this solitary wave solution and the small
wavenumber portion of the spectrum arising from the numerical simulations. This is in accord with the
statistical equilibrium theory, which predicts that the coherent structure should coincide with this solitary
wave (in the limit n→∞). For larger wavenumbers, the spectrum of the numerical solution is dominated by
the small scale fluctuations. We have indicated on the graph the large wavenumber spectrum predicted by
the statistical theory. This prediction comes from the second expression on the right hand side of eqn. (23),
except that we have approximated the minimum value H∗n of the Hamiltonian for the spectrally truncated
system with n modes by the Hamiltonian H∗ of the above-mentioned solitary wave solution for the continuum
system. Not only is there a good qualitative agreement with the predicted equipartition of kinetic energy
amongst the small-scale fluctuations (i.e., the k−2 slope), but there is also an excellent quantitative agreement
between the numerical results and the formula (23) for large k. Let us mention that the long-time spectrum
obtained from a single simulation starting from a given initial condition, and without time averaging, though
similar to the spectrum displayed in Figure 4, is much noisier.

As we have mentioned above, the numerical spectrum shown in Figure 4 arises from an ensemble average
over long time and over different initial conditions (with the same values of the particle number and the
Hamiltonian). Now, under the assumption that the dynamics is ergodic, such an average should coincide
with an average with respect to the microcanonical ensemble for the spectrally truncated NLS system [18].
Since it can be shown that the the mean–field statistical ensembles ρ(n) constructed above concentrate on
the microcanonical ensemble in the continuum limit n → ∞ (see Theorem 3 of reference [15]), it should be
that averages with respect to ρ(n) for large n agree with the ensemble average of the numerical simulations
over initial conditions and time, assuming ergodicity of the dynamics. While we have not shown that the
dynamics is ergodic, we have, in fact, demonstrated what we believe to be a convincing agreement between
the predictions of the mean–field ensembles ρ(n) and the results of direct numerical simulations. In [20], we
have also compared the long-time saturation values of the quantities

Sm(ψ(n)) =
∑

k2m
j |ψj |2 ,

attained in numerical simulations with the predicted statistical equilibrium averages under the mean–field
maximum entropy ensemble. Here, m is a positive integer. A close agreement between the numerical and
theoretical values is found.
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FIG. 4. Particle number spectral density |ψk|2 as a function of k for t = 1.1 × 106 unit time (upper curve). The
lower curve (smooth one) is the particle number spectral density for the solitary wave that contains all the particles of
the system. The straight line drawn for large k corresponds to the statistical prediction (23) for the spectral density
for large wavenumbers. The numerical simulation has been performed with n = 512, dx = 0.25, N0 = 20.48 and
H0 = −5.46.

V. CONCLUSIONS

The primary purpose of the present work has been to test the predictions of a mean–field statistical model of
self-organization in a generic class of nonintegrable focusing NLS equations defined by eqn. (1). This statistical
theory, which has been summarized above, was originally developed and analyzed in [15]. In fact, we have
demonstrated a remarkable agreement between the predictions of the statistical theory and the results of
direct numerical simulations of the NLS system. There is a strong qualitative and quantitative agreement
between the mean field predicted by the statistical theory and the large-scale coherent structure observed in
the long-time numerical simulations. In addition, the statistical model accurately predicts the the long-time
spectrum of the numerical solution of the NLS system. The main conclusions we have reached are 1) The
coherent structure that emerges in the asymptotic time limit is the solitary wave that minimizes the system
Hamiltonian subject to the particle number constraint N = N0, where N0 is the given (conserved) value of N ,
and 2) The difference between the conserved Hamiltonian and the Hamiltonian of the coherent state resides
in Gaussian fluctuations equipartitioned over wavenumbers. Further comparisons between the predictions of
the statistical theory and the results of direct numerical simulations of NLS may be found in [20].
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